
Making Strassen Matrix Multiplication Safe

Himeshi De Silva, John L. Gustafson, Weng-Fai Wong
School of Computing, National University of Singapore

Singapore
Email: {himeshi, john, wongwf}@comp.nus.edu.sg

Abstract—Strassen’s recursive algorithm for matrix-matrix
multiplication has seen slow adoption in practical applica-
tions despite being asymptotically faster than the traditional
algorithm. A primary cause for this is the comparatively
weaker numerical stability of its results. Techniques that aim
to improve the errors of Strassen stand the risk of losing
any potential performance gain. Moreover, current methods of
evaluating such techniques for safety are overly pessimistic or
error prone and generally do not allow for quick and accurate
comparisons.

In this paper we present an efficient technique to obtain
rigorous error bounds for floating point computations based
on an implementation of unum arithmetic. Using it, we evaluate
three techniques—exact dot product, fused multiply-add, and
matrix quadrant rotation—that can potentially improve the
numerical stability of Strassen’s algorithm for practical use.
We also propose a novel error-based heuristic rotation scheme
for matrix quadrant rotation. Finally we apply techniques that
improve numerical safety with low overhead to a LINPACK
linear solver to demonstrate the usefulness of the Strassen
algorithm in practice.

I. INTRODUCTION

Matrix-matrix multiplication is a heavily used operation
in many scientific and mathematical applications. Strassen’s
recursive algorithm for matrix multiplication has long been
known to be asymptotically faster than the traditional al-
gorithm [1]; Figure 1 shows the higher performance of
Strassen’s algorithm versus traditional matrix multiplication
obtained from a recent paper [2]. Cache effects cause a
non-monotonic increase, but there is a clear advantage for
matrices larger than about 1000-by-1000. The algorithm’s
ability to improve the performance using multiple levels of
recursion can also be seen here. Strassen-type algorithms
which minimize communication overhead in parallel im-
plementations also exist [3]. Because Strassen’s algorithm
tiles the matrix into submatrices, it is naturally amenable to
the same sort of cache-level optimizations that are currently
used to improve traditional matrix multiplication such as
those used in LAPACK. Given that the solution of the linear
system run by the TOP500 benchmark supercomputers uses
a matrix-matrix multiplication kernel in which matrix tiles
can be tens of thousands of elements on a side, significant
performance gains are possible with Strassen’s algorithm [4].

Despite the obvious advantages of Strassen’s algorithm, it
is not widely used by the scientific community. Most Level
3 Basic Linear Algebra Subprogram (BLAS) libraries, for

example, do not use it. A primary reason for this is the
weaker numerical stability of Strassen’s algorithm as it has
been implemented to date. Figure 2 shows this with proba-
bility density of the worst-case decimal accuracy. Improving
Strassen’s numerical stability to levels comparable to that
of the traditional algorithm will improve the likelihood of
Strassen’s algorithm being used in practical applications that
will benefit from its performance gains.

Numerical instability is caused by rounding of the ex-
act result of a computation to a floating point number.
Rounding after every operation as the calculation progresses
compounds such errors and can result in grave loss of
accuracy. In this work, we apply techniques—exact dot
product, fused multiply-add, and matrix quadrant rotation—
that can alleviate rounding errors in Strassen’s algorithm,
and compare their numerical stability improvements against
that of the traditional algorithm’s, using unum arithmetic.
Based on our evaluation we then apply the techniques with
the most promising performance gain and numerical stability
to the LINPACK benchmark [4] and measure the residuals
to compare their usefulness in practical applications.

Evaluating different matrix multiplication algorithms
based on their numerical stability can be performed by
obtaining bounds to the absolute error or by statistical aver-
aging the error of results of pseudo-random floating point in-
puts [5]. Deriving theoretical bounds requires careful mathe-
matical analysis and detailed understanding of floating point
arithmetic. To make the bounds tractable expressions, such

Traditional
Strassen 1 recursion level
Strassen 2 recursion levels

6 7 8 9 10 11 12 13 14
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Matrix size (power of 2)

S
p
e
e
d
u
p

Figure 1. Traditional vs. Strassen square matrix-matrix multiplication
performance on an Intel R© Xeon R© E5-2680 processor. (The work only
supports Sandy Bridge and Ivy Bridge microarchitectures at present.)

deriviations make simplifying assumptions that overestimate
the actual errors incurred. The statistical averaging of actual
errors also has a drawback; we will show in section II-D
how even simple inputs can produce surprisingly erroneous
results due to cancellation. Instead, we use unum arithmetic,
which implements variable precision interval arithmetic to
obtain rigorous floating point error bounds on the results
and thereby bound the accuracy loss. Unums provides a
practical, fast and highly flexible mechanism for gauging
numerical stability. Unlike other interval libraries, unums
support exact dot products, which we will show is a key
technique for making Strassen’s algorithm numerically safe.

Our contributions in this paper are summarized as follows:
• Introduce unum arithmetic as a practical, quick, and

rigorous method for measuring floating point error.
We adapt existing definitions of error to unums and
demonstrate how to use them to compare the numerical
stability of algorithms. We also provide a rigorously
tested software library that implements unums.

• Apply three techniques that reduce the errors of
Strassen’s algorithm without decreasing performance,
and compare them for numerical stability.

• Propose a heuristic algorithm which will output a
rotation scheme that improves the numerical stability
for Strassen’s algorithm when there is more than one
level of recursion.

• Demonstrate the effectiveness of selected techniques
with Strassen’s algorithm applied to a practical appli-
cation: a LINPACK linear equation solver.

The remainder of the paper is organized as follows.
Section II presents the background for our work. Section III
presents unum arithmetic, our implementation, and new error
and accuracy definitions for unums. In Section IV, we apply
the aforementioned techniques to Strassen’s algorithm and
compare their numerical stability to that of the traditional al-
gorithm, using unums. Section V applies selected techniques
to a LINPACK linear equation solver to demonstrate the
use of Strassen’s algorithm in practice. Section VI discusses
related work and Section VII concludes.

-4 -3 -2 -1 0
0.0

0.2

0.4

0.6

0.8

1.0

ϒ

n = 1024

P
ro

b
a
b
ili

ty

Traditional

Strassen 1

recursion level

Strassen 2

recursion levels

Figure 2. Histograms of worst-case accuracy (see section III-B for Υ
definition) of traditional vs. Strassen algorithms for a 1024-by-1024 matrix

II. BACKGROUND

A. Matrix Multiplication

Multiplying two matrices A and B to obtain a result
matrix C can be done in many ways. For the purpose of
this work we assume that A, B, and C are n× n matrices
and n is evenly divisible by 2r where r is the number
of recursions, described below. Non-square matrices can be
accommodated by tiling with square submatrices, or padding
with zeros. If we denote the (i, j)th entry of A, B, C as
aij , bij , and cij respectively, then the classical algorithm
for matrix multiplication can be written as Equation 1:

cij =

n∑
k=1

aikbkj . (1)

Each of the n2 elements in the result matrix requires n
multiplications and n − 1 additions, giving this algorithm
a time complexity of O(n3). Strassen’s algorithm improves
this time complexity by replacing some O(n3) matrix-matrix
multiplications with matrix-matrix additions which are of
O(n2) complexity, and by using recursion to obtain the
product of submatrices. The first step in Strassen’s algorithm
is to partition matrices A and B into quadrants such that(

a11 a12
a21 a22

)(
b11 b12
b21 b22

)
=

(
c11 c12
c21 c22

)
.

While Strassen’s original algorithm required 18 quadrant
additions and 7 quadrant multiplications, for our work we
use the Winograd variation which requires the minimum
number of quadrant additions, i.e. 15. The following equa-
tions define Strassen-Winograd matrix multiplication.

s1 = a21 + a22 s5 = b12 − b11
s2 = s1 − a11 s6 = b22 − s5
s3 = a11 − a21 s7 = b22 − b12
s4 = a12 − s2 s8 = b21 − s6

(2)

m1 = a11 · b11 m5 = s3 · s7
m2 = a12 · b21 m6 = s4 · b22
m3 = s1 · s5 m7 = a22 · s8
m4 = s2 · s6

(3)

t1 = m1 +m4 t2 = t1 +m5

t3 = t1 +m3

c11 = m1 +m2 c12 = t3 +m6

c21 = t2 +m7 c22 = t2 +m3

(4)

The multiplications m1, ...,m7 are of submatrices com-
puted by multiplying matrix quadrants of the input and
these form the recursive steps of the algorithm by invoking
the Strassen routine again. Thus, the algorithm has a time
complexity of O(nlog2 7) ≈ O(n2.8). In practice, recursion is
not applied all the way down to individual elements, since
the extra additions increase execution time more than the

eliminated multiplications reduce. Instead, it is only applied
r times, down to matrix sizes for which Strassen’s algorithm
is faster than the traditional algorithm. The size below
which applying Strassen’s algorithm is no longer beneficial
is known as the crossover point (see Figure 1). Beyond the
crossover point, traditional matrix multiplication is used to
compute m1, ...,m7.

B. Error in Floating Point Computations

Typical floating point numbers contain a sign bit s, a k-bit
value for the exponent e, and a p-bit value for the mantissa
m. The exponent bias, b, is 2k−1 − 1. The value of such a
representation is

x̂ =

{
(−1)s × 2e−b × 1.m if e 6= 0

(−1)s × 21−b × 0.m if e = 0
. (5)

The use of a fixed, finite number of bits to represent real
quantities makes rounding error an unavoidable hazard of
floating point arithmetic. The IEEE 754 standard for floating
point arithmetic defines the rules for rounding [6]. There are
several common ways to describe the error between a correct
value x and its floating point approximation, x̂. For example:
• Absolute error, ∆a, is simply the absolute difference

between the actual value and its floating point repre-
sentation: ∆a = |x− x̂|.

• Relative error, ∆r, gives a measure of the error relative
to the actual value of the answer: ∆r = |x−x̂x |.

• ULP error is a useful indicator of how many digits
are accurate in a floating point number. “ULP” stands
for “unit in the last place.” If the exponent value from
Equation 5 is z, then the ULP error is ∆u = |x̂− x| ×
(2p−z).

C. Numerical Stability of Strassen’s Algorithm

Two techniques have predominantly been used to measure
numerical stability: theoretical derivation of upper and lower
bounds to the error, and empirically calculating the absolute
error of the result, obtained by running the algorithm with
pseudo-random floating point inputs against the result com-
puted at a higher precision. Both techniques indicate that
Strassen’s algorithm and its variations cannot achieve the
same numerical stability as the traditional algorithm [7].

Derivations for numerical stability deem the traditional al-
gorithm component-wise numerically stable since the round-
ing error in the output depends only on the errors in the
corresponding row and column in the input. For n-by-n
matrices A, B, and C, the error in computing C = A ·B
is bounded by Inequality 6, where Ĉ is the result matrix
computed using floating point arithmetic, u is the unit
roundoff error, and | · | denotes the absolute value of matrix
elements:

|C− Ĉ| ≤ n× u× |A| × |B|+O(u2). (6)

Any polynomial algorithm for multiplying n × n matri-
ces that satisfies Inequality 6 must perform at least n3

multiplications [7]. Because Strassen’s algorithm performs
fewer than n3 multiplications, it cannot satisfy component-
wise numerical stability. Instead, the error bound of the
Strassen-Winograd algorithm satisfies Inequality 7 [8]. This
is referred to as normwise numerical stability. Here no is the
crossover point at which traditional matrix multiplication is
used, and ‖ · ‖ is the matrix norm. While these theoretical
error bounds are important, they are “loose” (overly pes-
simistic).

‖C− Ĉ‖ ≤
[(n
no

)log2 18

(n2o + 6no)− 6n
]

×u× ‖A‖ × ‖B‖ +O(u2).

(7)

D. Hazards of Floating Point Arithmetic

Empirical measurements of numerical stability are subject
to hazards such as cancellation that are inherent to floating
point arithmetic [9]. Matrix-matrix multiplication is such
a common task in scientific computing that most people
assume it is numerically well-behaved. However, consider
this situation: In multiplying 4-by-4 matrices A and B,
suppose one row of A is

⇀
a =

(
3.2× 108, 1,−1, 8× 107

)
and one column of B is

⇀

b =
(
4× 107, 1,−1,−1.6× 108

)
.

All the components of those two vectors are integers that
are exactly expressible with IEEE single-precision floats.
The matrix-matrix product requires that we find the dot
product

⇀
a ·

⇀

b . A straightforward single-precision compu-
tation of

⇀
a ·

⇀

b produces the result 0, indicating that the
vectors are orthogonal. This is confirmed by computing it
in IEEE double precision. Furthermore, it does not matter
whether we do the double-precision sum left-to-right, right-
to-left, or with a pairwise binary sum collapse. All three
methods reassure us that the dot product is 0. However, the
correct answer is 222. When statistically averaging errors using
pseudo-random inputs, these kinds of test cases can easily
be missed, resulting in misleadingly optimistic guidance.

III. BOUNDING ERRORS WITH UNUMS

A. Unum Arithmetic and Its Implementation

As seen in section II-D, the empirical technique of evalu-
ating numerical stability is not rigorous, whereas theoretical
bounds are overly pessimistic. Unum arithmetic provides a
number format and arithmetic operator rules that produce
a real interval (closed, open, or half-open) in which the
actual answer of the computation lies, instead of discarding
accuracy information by rounding. While unums enjoy the
benefits of traditional interval arithmetic such as being
able to measure errors due to approximation and non-
exact inputs, they are superior to interval arithmetic in that
they support variable precision and perfect set operations
(complement, union, and intersection) [10].

sign exponent fraction ubit e-size f-size

Figure 3. unum format

The unum number format is shown in Figure 3. Unum
arithmetic operates in a predefined environment which is
determined by two parameters, esizesize and fsizesize. The
length of the e-size (es) and f-size (fs) fields are determined
by these environment parameters. Their values in turn spec-
ify the length of the exponent and fraction fields. Figure 5
is an example of a unum in the environment {3,5} (i.e.
esizesize = 3 and fsizesize = 5). In this environment the es
field is 3 bits long while fs is 5 bits long. The 3-bit es field
can represent an exponent field of length 1 to 8 bits; similarly
the 5-bit fs field can represent a fraction field of length 1
to 32 bits. The variable length exponent and fraction fields
contain values with the smallest bit representation required
to represent the tightest interval containing the value.

Changing the es and fs values allows for experimenting
with different types of floats—single and double precision as
well as many types not in the IEEE 754 Standard. The ubit
is a single-bit field which when set indicates that the number
is inexact. When a unum is inexact, the actual value lies in
the open interval between two exact unums separated by one
ULP. Instead of committing rounding error when faced with
insufficient bits to represent a result, unums simply use the
ubit to indicate that the answer is inexact and represent the
interval that contains the result.

The value represented by an exact unum is given by
Equation 8, similar to that for IEEE floats.

u =

{
(−1)s × 2e−(2

es−1) × (1 + f
2fs+1) if e 6= 0

(−1)s × 2−2
es+2 × f

2fs+1 if e = 0
(8)

If the value lies in an interval more than one ULP wide,
it is represented with two unums, one each for the left and
right bounds. This is known as a ubound. This provides a
rich vocabulary for expressing open, half-open, and closed
bounds with independent precision for each endpoint of the
bound. Rules for operations of the form (x op y) where
op ∈ {+,−,×}, which are relevant to matrix multiplication,
are given in Tables I and II, which indicate how open (paren-
thesis) and closed (square bracket) endpoints are handled.
Because physical quantities in nature contains uncertainty,
our analysis assumes inputs are intervals that are 1 ULP
wide. Note: in the tables, directed rounding of (x op y) is
used to assure containment of the exact answer.

We have implemented these unum routines as a C library
with APIs similar to other multi-precision libraries, for
ease of adoption. Figure 4 shows a sample code for the
first product (3.2 × 108 × 4 × 107) of the dot product
example given in section II-D. While 32-bit floats incorrectly
produce 1.27999998334861312× 1016 as the exact answer
for this multiplication, 32-bit unums produce a correct

#include <unum.h>

int main() {
set_env(3,5);
ubound_t a1, b1, product;

ubound_init(&a1);
...
x2ub(3.2E+8, &a1);
x2ub(4E+7, &b1);
timesubound(&product, a1, b1);
...

Figure 4. Unum C code for one multiplication

0 1110100 011010111100110001000

00

1 110 10110

+ 253× 1+ 3532 320 /8388 608 ⋯ 7 23 = (12799998974492672,

12800000048234496)

Figure 5. Example of a unum

bound indicating that the value lies in the open interval
(12799998974492672, 12800000048234496) (Figure 5).

B. Relative Decimal Accuracy

We can now propose a new measure of error for unums to
compare different algorithms. The bound for the maximum
absolute error of a computation is half the absolute width
of the unum or ubound returned by it. If a computation
returns the unum or ubound for the interval (x, y), then the
maximum absolute error εabs in that range occurs at either
x or y when the correct value is at the midpoint. Therefore
we can write:

εabs =

∣∣∣∣x+ y

2
− y
∣∣∣∣

=
|x− y|

2

(9)

Even as the computation progresses to use a ubound to
represent the interval as its width grows beyond 1 ULP,
unum arithmetic still envelopes the interval with the nearest
exact or inexact unum values, thus maintaining Equation 9.

lower bound [−∞ (−∞ [y (y [∞
[−∞ [−∞ [−∞ [−∞ [−∞ (NaN
(−∞ [−∞ (−∞ (−∞ (−∞ [∞

[x [−∞ (−∞ [x± y (x± y [∞
(x [−∞ (−∞ (x± y (x± y [∞
[∞ (NaN [∞ [∞ [∞ [∞

upper bound −∞] y) y] ∞) ∞]
−∞] −∞ −∞] −∞] −∞] NaN)
x) −∞] x± y) x± y) ∞) ∞]
x] −∞] x± y) x± y] ∞) ∞]
∞) −∞] ∞) ∞) ∞) ∞]
∞] NaN) ∞] ∞] ∞] ∞]

Table I
RULES FOR UNUM ADDITION AND SUBTRACTION

lower bound [0 (0 [y (y [∞
[0 [0 [0 [0 [0 (NaN
(0 [0 (0 (0 (0 [∞
[x [0 (0 [x.y (x.y [∞
(x [0 (0 (x.y (x.y [∞
[∞ (NaN [∞ [∞ [∞ [∞

upper bound 0] y) y] ∞) ∞]
0] 0] 0] 0] 0] NaN)
x) 0] x.y) x.y) ∞) ∞]
x] 0] x.y) x.y] ∞) ∞]
∞) 0] ∞) ∞) ∞) ∞]
∞] NaN) ∞] ∞] ∞] ∞]

Table II
RULES FOR UNUM MULTIPLICATION

For the unum or ubound u representing the interval (x, y),
we define the relative error, εrel as,

εrel =
|x−y|

2
|x+y|

2

=

∣∣∣∣x− yx+ y

∣∣∣∣
(10)

Relative error provides a more relevant comparison since
it provides context of the magnitude of the correct value.
Single ULP relative error for floating point values “wobbles”
as the fraction ranges from 1 to 2; for unums, single ULP
relative error also changes due to variable fraction length.

Relative accuracy, α, is the inverse of relative error and
thus can be written as:

α =
1

εrel
(11)

Let the relative decimal accuracy of a computed value that
lies in the interval (x, y) be Υ. Then

Υ(x, y) = log10(α)

= log10

∣∣∣∣x+ y

x− y

∣∣∣∣ (12)

For example, if x and y agree to 6 decimal places, then
Υ(x, y) will be approximately 6. If x and y differ in sign,
Υ(x, y) will be negative.

C. Unums vs. Other Interval Arithmetic Implementations

Some interval arithmetic implementations that are avail-
able are libieee1788, JInterval and MPFI [11]–[13]. How-
ever, only unum arithmetic offers support for the exact
fused dot product which we have employed in our work.
Moreover these libraries either rely on the support of multi-
precision libraries such as MPFR [14] (making them order
of magnitudes slower, thus rendering them unusable for
practical use) or use native floating point arithmetic which
is susceptible to rounding errors. Unums also support open
intervals which ensure the safe execution of the computation
as well as a more complete representation of the possible
intervals on the number line. By changing the environment

Float LLNL Our

Implementation Implementation

Conversion
- 6.53s× 10−7s 1.19× 10−8s

(float to posit)

Addition 1.99× 10−10s 2.03× 10−5s 3.92× 10−7s

Multiplication 2.18× 10−10s 5.58× 10−6s 4.72× 10−6s

Table III
SPEED OF OPERATIONS OF FLOATS AND UNUMS IN {3,5}

and maximum exponent and fraction sizes, unums also
allows experimentation with many floating point formats
other than IEEE 754 single and double precision.

Apart from these interval arithmetic libraries, there are
several other implementations of unum arithmetic. However,
for reasons such as being too slow, not flexible enough
for our experiments, or not having being tested enough,
we chose to develop and thoroughly test our own flexible
unum library in C. Table III gives a comparison of speed
of operations between floats, our unum implementation, and
another unum library developed at the Lawrence Livermore
National Laboratory (LLNL) in C [15]. While the LLNL
library allows for a wider range of precisions, it comes at
the cost of reduced speed as shown by the timings (measured
on the same hardware as in Section IV-E), thus requiring us
to come up with our own faster implementation.

IV. EVALUATION

Using unums, we evaluate the numerical stability of each
of the three techniques—exact dot product, fused multi-
ply add and matrix quadrant rotations—when applied to
Strassen’s algorithm against the traditional algorithm. For
a given matrix size n and recursion level r, we repeatedly
execute both algorithms (with Strassen’s combined with the
proposed technique) with the same inputs to measure their
minimum Υ value (worst decimal accuracy). We then plot
the probability density function of the results (based on a
smooth kernel density estimate) to observe each technique
with respect to their worst Υ value. To mimic IEEE floats
with unums, we limit the maximum exponent and fraction
sizes (es and fs) of the unum environment to those of IEEE
single precision floats. Note that because the traditional
algorithm uses an input element only once in the calculation
of an output element and thus does not suffer from the
dependency issue of interval arithmetic [10], the bound on
the worst-case floating point error will be tight.

Previous statistical studies of the numerical stability of
Strassen’s algorithm have used pseudo-random floats se-
lected from the range (0, 1) or (−1, 1) as proxies for the
set of all possible floats [16]. Since we wish to capture
the effects of adding numbers of different sign, we use
(−1, 1) as our proxy range with the numbers uniformly

distributed. This range includes numbers spanning many
orders of magnitude, as floats are designed to do. A more in-
formative sampling requires application-specific knowledge
of the probability distribution of values.

A. The Exact Dot Product

Given two lists of n floating point numbers A =
(a1, a2, ..., an) and B = (b1, b2, ..., bn), the Exact Dot Prod-
uct (EDP) is computed by Equation 13 with rounding taking
place only after the entire expression has been computed
exactly in a high-precision fixed-point accumulator.

EDP(A,B) = round(a1 · b1 + a2 · b2 + ...+ an · bn) (13)

Kulisch observed that with a “perfect accumulator” of
a few hundred bits, the dot product of float vectors can
be calculated exactly [17]. Because rounding only happens
when converting the EDP to a float, error is at most 0.5 ULP.
Recent hardware designs have shown that the EDP is a fast
and practical feature to add to an arithmetic unit [18]. More-
over, support for the EDP is growing with 22 open-source
and 5 proprietary projects underway or completed to create
software or hardware for Type III unums (known as posits),
which includes in its upcoming standard a requirement that
the EDP be supported [19].

To apply the EDP to Strassen’s algorithm, we implement
it in the unum C library. Since the results are computed as
bounds, we use an EDP accumulator for each endpoint. In
the first step, the upper and lower bounds of the product of ai
and bi are obtained using Table II rules. To add the computed
bounds to the accumulators, the fraction is extended to its
maximum size in that environment, shifted by its exponent
biased with twice the absolute smallest possible exponent
in that unum environment (since unums have variable bit
lengths, these values change between environments). The
shifted values are then added to the long accumulators
according to rules in Table I. At the end of the operation,
the accumulator results are converted back into a ubound.
The length l of an accumulator in bits for this routine is
given by Equation 14 where fsize is the maximum fraction
size, emax is the maximum exponent, emin is the absolute
value of the minimum exponent in the environment, and δ
is a few additional bits to guard against overflow. δ can be
precomputed depending on the log2 of the maximum number
of terms that the EDP should handle.

l = 2(emax + emin + fsize + 1) + δ. (14)

1) Single recursion level: Figure 6 shows the behavior
of the worst decimal accuracy of traditional vs. Strassen’s
algorithm combined with EDP for a single recursion and
various n values. As n increases, Strassen’s algorithm com-
bined with the EDP has accuracy that surpasses that of the
traditional algorithm and keeps improving.

Note: because submatrices are re-used in Strassen’s algo-
rithm, any interval-type bound overestimates error because

of the “dependency problem.” Therefore, the advantage
of Strassen’s algorithm with EDP is understated by these
results.

2) Two recursion levels: As with the previous case,
Figure 7 shows that the worst Υ of Strassen’s with EDP
is superior to the traditional case at around n = 4096 and
keeps on improving, when two recursion levels are used.

B. Fused multiply-add

Given floating point values a, b and c, the fused multiply-
add (FMA) is defined as

round(a+ (b× c)). (15)

That is, rounding takes place only after the addition. While
it does not reduce the number of rounding operations
as dramatically as the EDP, FMA has the advantage of
widespread hardware support; the 2008 revision to the IEEE
754 Standard mandates FMA support. An FMA call is
implemented in our unum C library, similarly to the EDP.

1) Single recursion level: Figure 8 illustrates the behavior
of the worst Υ of Strassen’s algorithm combined with FMA
with one recursive level, versus the traditional algorithm.
Strassen’s algorithm does not improve its worst elements
beyond that of the traditional algorithm and shows about
0.7 decimals less accuracy at the peak in each case of n.

2) Two recursion levels: When there are two recursion
levels of Strassen’s algorithm combined with FMA, it still
lags behind the traditional algorithm in terms of the worst Υ
value but shows some improvement for the larger n value.

C. Sub-matrix Quadrant Rotation

Operations in Strassen’s algorithm are not evenly dis-
tributed among matrix elements; certain quadrants get com-
pounded with error with each recursion level. However, by
changing how the input separation is done in recursions, the
error distribution among the quadrants in the result matrix
can be modified [20]. The input matrices can be permuted

Strassen
+ EDP
Traditional

0 1 2 3
0.0

0.2

0.4

0.6

0.8

ϒ

n = 128, r = 1

P
ro

b
a
b
ili

ty

Strassen
+ EDP
Traditional

-2 -1 0 1 2
0.0

0.2

0.4

0.6

0.8

ϒ

n = 256, r = 1

P
ro

b
a
b
ili

ty

Strassen
+ EDP
Traditional

-3 -2 -1 0 1
0.0

0.2

0.4

0.6

0.8

ϒ

n = 512, r = 1

P
ro

b
a
b
ili

ty

-2.0 -1.5 -1.0 -0.5 0.0 0.5
0.0

0.2

0.4

0.6

0.8

1.0

ϒ

n = 1024, r = 1

P
ro

b
a
b
ili

ty

Strassen
+ EDP
Tradition
-al

Figure 6. Strassen + EDP vs. Traditional, one recursion level

Strassen
+ EDP
Traditional

-5 -4 -3 -2
0.0

0.2

0.4

0.6

0.8

ϒ

n = 4096, r = 2

P
ro

b
a
b
ili

ty

Strassen + EDP
Traditional

-6.5 -6.0 -5.5 -5.0 -4.5 -4.0 -3.5
0.0

0.5

1.0

1.5

2.0

2.5

ϒ

n = 16384, r = 2

P
ro

b
a
b
ili

ty

Figure 7. Strassen + EDP vs. Traditional, two recursion levels.

using Equations 16 – 19 so that the results with the least or
greatest error can be shifted to different quadrants.

(
a11 a12
a21 a22

)
×
(
b11 b12
b21 b22

)
=

(
c11 c12
c21 c22

)
(16)

(
a21 a22
a11 a12

)
×
(
b11 b12
b21 b22

)
=

(
c21 c22
c11 c12

)
(17)

(
a11 a12
a21 a22

)
×
(
b12 b11
b22 b21

)
=

(
c12 c11
c22 c21

)
(18)

(
a21 a22
a11 a12

)
×
(
b12 b11
b22 b21

)
=

(
c22 c21
c12 c11

)
(19)

When applying Strassen’s algorithm at only one level,
rotating the input quadrants will have no effect on the overall
numerical stability of the result since it will only shift the
four quadrants along with their errors. However, if rotation is
applied to the seven submatrix multiplications at the second
recursive level, the error distributions of m1,...,m7 at the
first recursive level can be modified, resulting in the change
of the error distribution in the result.

D. Rotation Based on Heuristic Errors

The selection of which rotation to apply at each recursion
level is important to the improvement of the numerical

Strassen
+ FMA
Traditional

-2 -1 0 1 2
0.0

0.2

0.4

0.6

0.8

ϒ

n = 128, r = 1

P
ro

b
a

b
ili

ty

Strassen
+ FMA
Traditional

-3 -2 -1 0 1 2
0.0

0.2

0.4

0.6

ϒ

n = 256, r = 1

P
ro

b
a

b
ili

ty

Strassen
+ FMA
Traditional

-3 -2 -1 0 1
0.0

0.2

0.4

0.6

ϒ

n = 512, r = 1

P
ro

b
a
b
ili

ty

Strassen
+ FMA
Tradition
-al

-4 -3 -2 -1 0
0.0

0.2

0.4

0.6

0.8

ϒ

n = 1024, r = 1

P
ro

b
a
b
ili

ty

Figure 8. Strassen + FMA vs. Traditional, one recursion level

Strassen+FMA
Traditional

-4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

ϒ

n = 4096, r = 2

P
ro

b
a
b
ili

ty

Strassen
+FMA
Traditional

-7 -6 -5 -4
0.0

0.5

1.0

1.5

2.0

2.5

ϒ

n = 16384, r = 2

P
ro

b
a

b
ili

ty

Figure 9. Strassen + FMA vs. Traditional, two recursion levels

stability of the result. Previously suggested techniques are
random and round robin selection [20]. Here we propose
a new rotation scheme that is based on the distribution of
error in the final result. Conventional wisdom dictates that
the accuracy of a floating point calculation tends to decrease
with the number of rounding operations. While this is not
always the case, as Figure 10 demonstrates, the number
of rounding operations each result element undergoes is a
sufficient heuristic to indicate the error it will finally possess.
The heatmap on the left shows the distribution of total
rounding operations for each element of the matrix; the right
heatmap shows the error distribution corresponding to each
element (when Strassen is applied without any rotation).

To work out which permutation defined in Equations 16–
19 should be applied at each node in the recursion tree,
based on the accumulation of operations throughout the
computation such that the numerical stability of the result
is improved, let us first denote the matrix permutations in
Equations 16 – 19 as P = {p1, p2, p3, p4}, respectively, and
the number of levels of recursion (the height of the recursion
tree not considering the leaf nodes) as h. We define the se-
lected list of permutations as Rfinal ← {r1, r2, ..., ri, ..., rk}.
Here, k =

∑h−1
i=0 7i; ri denotes the selected permutation at

the ith node of the recursion tree which is numbered breadth-
first, and ri ∈ P . Since there are four possible permutations,
the total number of possibilities for applying permutations
to a given set of m1, ...,m7 is 47.

Algorithm 1 outputs Qfinal for each set of m1, ...,m7

which is rearranged to obtain Rfinal. Routines MATMUL-
TRADITIONAL, MATRIXADD and MATRIXSUB all update
the addition and multiplication counts of each matrix ele-
ment depending on the particular algorithm. Since a test of

1 500 1024

1

500

1024

1 500 1024

1

500

1024

2100

3300

4600

5800

7100

8300

(a) Total rounding count

1 500 1024

1

500

1024

1 500 1024

1

500

1024

1.2

1.8

2.5

3.2

3.8

4.5

5.1

(b) Υ

Figure 10. Inverse relation between total rounding count and accuracy
(n = 1024, r = 2)

Algorithm 1 Algorithm for computing heuristic rotation
1: procedure ROTATE(A,B, size) . input A,B, and size
2: if size = n

2h
then . Crossover point

3: C = MATMULTRADITIONAL(A,B, size)
4: return C
5: {a11, a12, a21, a22} ← PARTITION(A)
6: {b11, b12, b21, b22} ← PARTITION(B)
7: s1 = MATRIXADD(a21, a22) . Compute s1, ..., s8

8:
... (see Equation 2)

9: s8 = MATRIXSUB(b21, s6)
10: size← size/2
11: m1 = ROTATE(a11, b11, size)

12:
... (see Equation 3)

13: m7 = ROTATE(a22, s8, size)
14: Let Qi ← {q1, ..., q7}; q1,..,7 ∈ P , be a list of

permutations that can be applied to a set of m1, ...,m7

15: L← {Q1, Q2, ..., Q47} . Generate all Qi

16: for each Qi ∈ L do
17: Ctemp ← COMBINE(m1, ...,m7, Qi)
18: if ISMORESTABLE(Ctemp, C) then
19: C← Ctemp
20: Qfinal ← Q

21: PRINT(Qfinal) . Output the optimal combination
22: return C

-6 -5 -4 -3 -2
0.0

0.5

1.0

1.5

ϒ

n = 4096, r = 2

P
ro

b
a

b
ili

ty

Traditional
Strassen
+ No Rotation
Strassen
+ Heuristic
Strassen
+ Random
Strassen
+ Round Robin

Figure 11. Strassen + Rotation vs. Traditional, Two Recursion Levels

multiplication and addition of random (positive and nega-
tive) values shows that multiplications deteriorate Υ more
than addition, the two operations will have different weights
in accumulation. The COMBINE routine executes Equa-
tions 4. ISMORESTABLE sorts the total operation counts
of two matrices, and selects the one that minimizes the
maximum operation count per result element.

1) Two recursion levels: Figure 11 compares Strassen
with several rotation techniques—random, round robin,
heuristic—against the traditional algorithm. Here the heuris-
tic rotation produces a small improvement of Υ, how-
ever there is no significant difference between the rotation
schemes. Moreover, Strassen with rotation alone cannot
achieve the numerical stability of the traditional algorithm.

E. Discussion

Apart from numerical stability, speed and overhead also
affect the selection of an algorithm for practical use. Here
we model the performance of the proposed techniques when
applied to traditional and Strassen’s matrix multiplication
algorithms. Recent work has demonstrated that the EDP
can be computed with one cycle per element pair of the
input vector, a performance matching that of Intel’s MKL
routine for a dot product [18]. This means that applying
EDP to Strassen’s algorithm and replacing a dot product
routine leaves its performance gains intact without incurring
additional overhead. Rotation simply involves changing a
pointer, and therefore adds no overhead. While applying
EDP to the traditional algorithm will achieve the best
numerical stability, Strassen’s with EDP will still produce
favorable performance. (The Kahan summation technique
was not considered for improving numerical stability due to
its tripling of addition operation count, which negates any
performance gain [21].)

Table IV compares numerical stability, operation counts,
and timing (on Intel Xeon CPU E5-2650 v4 @ 2.20 GHz,
32K L1d, 32k L1i, 256K L2, 30720K L3 and using icc
18.0.3 20180410) for an n × n float matrix multiplication
when n is 4096 and 16384, for the different algorithms
and techniques proposed. Here, Strassen’s algorithm uses
r = 2. Although applying the EDP to the traditional
algorithm will yield the best numerical stability, as seen
by the performance numbers, it is slower than when the
EDP is applied to Strassen’s algorithm. Strassen’s with the
EDP is also the fastest among all the combinations of
algorithms/techniques. The traditional algorithm performs
the worst. Strassen with rotation has similar performance to
Strassen without, confirming that rotation adds no overhead.

Because the performance of the EDP is similar to that
of the Intel MKL dot product, we use it to simulate the
performance of the EDP. However the dot product call
is not typically used for matrix multiplication and instead
the optimized level 3 BLAS ?GEMM function for matrix
multiplication is used (which uses the traditional algorithm).
Using this call with the traditional algorithm takes 1.63 and
105.74 seconds for 4096 and 16384 matrix sizes. Using
the same call with Strassen yields a timing of 1.81 and
91.81 seconds for the same sizes. As shown in Figure 1
and demonstrated [2], this level 3 BLAS call can be further
optimized for an even better performance for Strassen,
surpassing that of the traditional algorithm even for smaller
matrix sizes.

Interval arithmetic bounds become loose when the same
interval appears multiple times in the calculation. While
the traditional algorithm is not subjected to this, Strassen’s
algorithm is. Unum arithmetic provides a solution to this by
optionally subdividing an interval into subintervals that tile
each interval perfectly, which reduces the dependency effect

Method Stab. Operations Time(s)

Rank 4096 16384

Trad.+EDP 0 n2EDP 10.09 744.15

Strassen+EDP 1 165n2

16
add, 49n2

16
EDP 6.73 498.92

Trad. 2 n3 − n2add, n3mul 21.34 1628.57

Strassen+FMA 3 165n2

16
add, 49n

3

64
− 49n2

16
FMA 7.79 1103.53

Strassen+Rot. 4 49n3

64
+ 29n2

4
add, 49n3

64
mul 9.68 1090.45

Strassen 5 49n3

64
+ 29n2

4
add, 49n3

64
mul 9.60 1083.70

Table IV
SPEED AND NUMERICAL STABILITY COMPARISON FOR STRASSEN’S

WITH TECHNIQUES WHEN r = 2

at the cost of extra work. However, because the intervals
were already sufficiently small to show the numerical safety
of Strassen’s algorithm, bound-tightening methods were not
necessary in our work.

V. COMBINING EDP AND ROTATION

Given that the evaluations from the previous section indi-
cate that the EDP improves the numerical stability and speed
the most, and rotation improves numerical stability with no
overhead, we combined EDP with rotation and applied it
to the LINPACK benchmark to demonstrate its usefulness
in practice [4]. We implemented the linear solver in C
conforming to the ground rules specified for the LINPACK
benchmark and had it use matrix multiplication with both
the traditional algorithm and the combined technique. For
each run of the algorithms, the following residual value was
calculated [22]:

||Ax− b||∞
ε× (||A||∞ × ||x||∞ + ||b||∞)× n

(20)

We use the same default ε value (ε = 2−16), matrix norm
calculation, and double precision floating point as in the
HPL version of the LINPACK benchmark.

Figure 12 shows the smoothed histogram plot for 100 runs
of the solver in which the dimension of A is N = 8192,

Strassen with EDP

+ rotation

Traditional

2.×10
-6

2.5×10
-6

3.×10
-6

3.5×10
-6

Residual

C
o
u
n
t

Figure 12. Linear solver residuals: Strassen+EDP+rotation vs. Traditional

using two levels of recursion of Strassen’s algorithm. The
HPL benchmark specifies a threshold value with which the
residual value of a run will be compared against (default is
16). If the residual value is in the same order (order of 1)
as the threshold, then the run is considered to have passed;
all of our runs passed. Both algorithms show comparable
residuals, confirming that Strassen’s algorithm with the EDP
can safely be used in practice. In fact, Figure 12 shows
our modified Strassen to have superior numerical accuracy
compared to traditional matrix multiplication.

VI. RELATED WORK

Conventional interval arithmetic has been proposed as
a means to obtain the worst-case error bounds of floating
point computations [23]. Many hardware implementations
of interval arithmetic too have been developed [24]. Kahan
has stated that what is needed is variable-precision interval
arithmetic, which is exactly what unum arithmetic provides
(in addition to other refinements) [25].

There have been many attempts at deriving theoretical
error bounds for Strassen’s algorithm [26], [27]. Our ref-
erence for numerical stability of both algorithms was based
on Higham’s textbook on stability of numerical methods [8].
While these bounds are important theoretically, they cannot
consider practical aspects that are dependent on input varia-
tions. Strassen’s algorithm has been computed with intervals
using Rump’s arithmetic to minimize the effect dependency
and produce tighter intervals [28] without trying to improve
its numerical stability.

Rotation as a technique for improving the numerical
stability of Strassen’s algorithm was first proposed by Cas-
trapel and Gustafson [20]. They do not provide empirical
evaluation of rotation and only suggest round-robin and
random selection of rotation. Dumitrescu proposes the use
of scaling when inputs are of widely varying magnitude to
improve the error bounds of Strassen’s algorithm [29]. Ka-
porin presents a fast matrix multiplication that has improved
numerical stability for certain matrix dimensions [30]. The
applicability of both techniques depend on the input. Ballard
et. al suggest manipulating the fast matrix multiplication
algorithm by applying different algorithms at different nodes
of the recursion tree to improve numerical stability as well
as diagonal input scaling [16]. This reduces the potential
performance gain of applying only Strassen’s algorithm.

VII. CONCLUSION

Obtaining rigorous error bounds of an algorithm is an
important aspect of providing safety guarantees for the
many applications that use floating point arithmetic. Unums
provide a practical, quick and accurate way of obtaining this
information without the need for complex analysis. The use
of unums to measure the the accuracy of Strassen’s algorithm
demonstrate this.

The combination of the EDP and Strassen’s algorithm
shows that we can achieve both higher speed and better
accuracy at the same time. Moreover, with efficient hardware
accelerators for EDP this approach becomes even more
desirable. For computing environments that have no access
to the EDP, we proposed a heuristic rotation scheme that
can be easily applied to improve the numerical stability with
smaller margins of improvement. Our work enables the safe
use of Strassen’s algorithm in practical applications.

REFERENCES

[1] V. Strassen, “Gaussian elimination is not optimal,” Nu-
merische Mathematik, vol. 13, no. 4, pp. 354–356, 1969.

[2] J. Huang, T. M. Smith, G. M. Henry, and R. A. van de
Geijn, “Strassen’s algorithm reloaded,” in Proceedings of the
International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE Press, 2016, p. 59.

[3] B. Lipshitz, G. Ballard, J. Demmel, and O. Schwartz,
“Communication-avoiding parallel strassen: Implementation
and performance,” in Proceedings of the International Confer-
ence on High Performance Computing, Networking, Storage
and Analysis. IEEE Computer Society Press, 2012, p. 101.

[4] J. J. Dongarra, P. Luszczek, and A. Petitet, “The linpack
benchmark: past, present and future,” Concurrency and Com-
putation: practice and experience, vol. 15, no. 9, pp. 803–820,
2003.

[5] D. Bini and G. Lotti, “Stability of fast algorithms for matrix
multiplication,” Numerische Mathematik, vol. 36, no. 1, pp.
63–72, 1980.

[6] IEEE, “IEEE standard for binary floating-point arithmetic,”
IEEE Std. 754-2008, 2008.

[7] W. Miller, “Computational complexity and numerical stabil-
ity,” SIAM Journal on Computing, vol. 4, no. 2, pp. 97–107,
1975.

[8] N. J. Higham, Accuracy and stability of numerical algorithms.
SIAM, 2002.

[9] D. Goldberg, “What every computer scientist should know
about floating-point arithmetic,” ACM Computing Surveys
(CSUR), vol. 23, no. 1, pp. 5–48, 1991.

[10] J. L. Gustafson, The End of Error: Unum Computing. CRC
Press, 2015.

[11] M. Nehmeier, “libieeep1788: A c++ implementation of the
ieee interval standard p1788,” in Norbert Wiener in the 21st
Century (21CW), 2014 IEEE Conference on. IEEE, 2014,
pp. 1–6.

[12] D. Y. Nadezhin and S. I. Zhilin, “Jinterval library: Principles,
development, and perspectives.” Reliable Computing, vol. 19,
no. 3, pp. 229–247, 2013.

[13] “Multiple precision interval arithmetic library,” https://gforge.
inria.fr/frs/?group id=157.

[14] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zim-
mermann, “Mpfr: A multiple-precision binary floating-point
library with correct rounding,” ACM Transactions on Mathe-
matical Software (TOMS), vol. 33, no. 2, p. 13, 2007.

[15] L. L. N. Laboratory, “Universal number library,” https://
github.com/LLNL/unum, accessed: 2018-06-18.

[16] G. Ballard, A. R. Benson, A. Druinsky, B. Lipshitz, and
O. Schwartz, “Improving the numerical stability of fast ma-
trix multiplication,” SIAM Journal on Matrix Analysis and
Applications, vol. 37, no. 4, pp. 1382–1418, 2016.

[17] U. W. Kulisch and W. L. Miranker, Computer arithmetic in
theory and practice. Academic press, 2014.

[18] J. Koenig, D. Biancolin, J. Bachrach, and K. Asanovic, “A
hardware accelerator for computing an exact dot product,” in
Computer Arithmetic (ARITH), 2017 IEEE 24th Symposium
on. IEEE, 2017, pp. 114–121.

[19] “Posithub,” https://posithub.org/, accessed: 2018-06-18.

[20] R. R. Castrapel and J. L. Gustafson, “Precision improve-
ment method for the strassen/winograd matrix multiplication
method,” Apr. 24 2007, uS Patent 7,209,939.

[21] W. Kahan, “Pracniques: further remarks on reducing trunca-
tion errors,” Communications of the ACM, vol. 8, no. 1, p. 40,
1965.

[22] “HPL - A Portable Implementation of the High-Performance
Linpack Benchmark for Distributed-Memory Computers,”
http://www.netlib.org/benchmark/hpl/, 2017, [Online; ac-
cessed 14-September-2017].

[23] W. Kramer, “A priori worst case error bounds for floating-
point computations,” IEEE transactions on computers,
vol. 47, no. 7, pp. 750–756, 1998.

[24] M. J. Schulte and E. E. Swartzlander, “A family of variable-
precision interval arithmetic processors,” IEEE Transactions
on Computers, vol. 49, no. 5, pp. 387–397, 2000.

[25] “Transcription of The Great Debate: John Gustafson vs.
William Kahan on Unum Arithmetic Held July 12, 2016
Moderated by Jim Demmel,” http://www.johngustafson.net/
pdfs/DebateTranscription.pdf, 2016, [Online; accessed 15-
January-2018].

[26] R. P. Brent, “Algorithms for matrix multiplication,” DTIC
Document, Tech. Rep., 1970.

[27] J. Demmel, I. Dumitriu, O. Holtz, and R. Kleinberg, “Fast
matrix multiplication is stable,” Numerische Mathematik, vol.
106, no. 2, pp. 199–224, 2007.

[28] M. Ceberio and V. Kreinovich, “Fast multiplication of interval
matrices (interval version of strassen’s algorithm),” Reliable
Computing, vol. 10, no. 3, pp. 241–243, 2004.

[29] B. Dumitrescu, “Improving and estimating the accuracy of
strassen’s algorithm,” Numerische Mathematik, vol. 79, no. 4,
pp. 485–499, 1998.

[30] I. Kaporin, “The aggregation and cancellation techniques as
a practical tool for faster matrix multiplication,” Theoretical
Computer Science, vol. 315, no. 2-3, pp. 469–510, 2004.

